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Hidden symmetry breaking in a generalized valence-bond 
solid model 

Keisuke Totsukat and Masuo Suzuki 
Depanment of Physics, University of Tokyo, 7-3-1 Hongo. Bunkyo-ku. Tokyo 113. Japan 

Received 3 May 1994 

Abstract. A 'boson' representation for the ground slate of the generalized valence-bond solid 
model is derived. The relation between this expression and the matrix-product representation of 
Kliimper eta! is discussed. It is shown that the hidden 2 2  x 22-symmetry is partially broken 
in this model. Elementary excitations of this system have a toplogical nahm similar to that in 
the Ameck, Kennedy, Lieb and T x k i  model. 

1. Introduction 

Since Haldane [ I ,  21 predicted the peculiar behaviour of the Heisenberg chain with respect 
to the value of its spin S, one-dimensional spin systems with an integer spin have attracted 
great interest among many researchers (see [3] for a review). For the S = 1 chain at 
least, our qualitative understanding of the massive (or disordered) behaviour has deepened 
through the work of Affleck, Kennedy, Lieb and Tasaki (AKLT) [4]. They constructed an 
exact ground state called the valence-bond solid (VBS) state for a special bilinear-biquadratic 
Hamiltonian (AKLT model). They also showed that: (if the infinite-volume ground state is 
unique; and (ii) the (ordinary) correlation functions decay exponentially with a correlation 
length l / I n 3 .  

Further progress has been achieved by den Nijs and Rommels [5] and by Tasaki [6]. 
They have found that although there is no ordinary long-range order (LRO) in the ground 
state of the A U T  model, it has a special type of long-range order, i.e., the string order, 
which can be measured by the so-called string-order parameter. Numerical calculations 
suggest that the string order exists at the Heisenberg point as well as at the AKLT point 
[7,8]. Now it is believed that the string LRO exists in a wide class of S = 1 chains with 
anisotropy. 

On the other hand, we can construct exact ground states for S = 1 chains with the 
z-axis anisotropy in the same manner as in the AKLT. One way is to replace the su(2)- 
projection operator of the AKLT model by the Uq(su(2))-projector [9, IO] (for other deformed 
spin chains, see [ 1 I]). The quantum group was originally introduced independently by 
Drinfeld [12] and Jimbo [13] in the context of integrable systems. One of the crucial 
differences between su(2) and Uq(su(2)) is the asymmetric co-product. Under this rule, the 
ordinary Clebsch-Gordan decomposition enjoys the one-parameter deformation by q = e*. 
Replacing the 'projection onto the S = 2 representation' by the 'projection onto the J = 2 
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representation of U,(su(2))’ as 

K Totsuka and M Suzuki 

for the Casimir operator C defined by (7) (see section 2 for the meaning of the notation 
In],), we can construct the q-analogue of the VBS state as an exact ground state of the 
deformed AIUT model [lo] 

(1) 

with a(q) = ( q - q - ’ ) / 2  and (A. BJSym = (AB+BA)/2 (it is constructed by representing C 
in terms of the su(2)-operators). It should be remarked that i t  is invariant under the rotation 
about the z-axis (U(])-symmetry) and a simultaneous operation S: 4 -Sf, q --f q-I (the 
latter symmetry can be regarded as a generalization of the ordinary 22-symmetry and this 
is quite natural in view of the V,(su(Z))). 

Kliimper et al constructed its ground state as a matrix product (MP) by tuning the 
parameters and showed that the ordinary correlation is short ranged for generic values of 
q.  However, nobody has studied explicitly the relation between their MP construction and 
the conventional valence-bond construction [14]. It is  also an open question as to whether 
there exists a hidden symmetry in this system. In this paper, we shall clarify these points. 

The present paper is organized as follows. In section 2, we introduce the so-called 
q-Schwinger realization of Uq(su(2)) and construct the boson representation of the q-VBS 
state using it. From this bosonic expression, we can rederive the MP ground state (MF’G) 
of Klumper et al in such a manner that the edge degrees of freedom are manifest and 
clarify its relation to the valence-bond-type models. Section 3 is devoted to a discussion 
of the hidden symmetry. There, we formally introduce the Kennedy-Tasaki transformation 
[15,16] and calculate the string correlation functions both in the x -  and .?-directions. The 
effect of the deformation parameter q on various quantities is also discussed. In section 4, 
we calculate an approximate energy spectrum using the single-mode approximation (SMA) 
and discuss its properties. In the appendices, a generalization of the MP construction to 
higher S systems and the outline of the proof of the infinite-volume uniqueness are given 
(proof of the uniqueness for the case of afvtite periodic chain is given in [IO]). 

1 + -[21*a(q){(si+s:i 4 + s;sLl)- (sf - q+i+l))sym 

2. q-boson representation of the q-ws state 

The quantum group Up(su(2)) is defined by the three elements {J+, J - ,  J 3 )  satisfying the 
following relations [ 12,131: 

(2) [ J + , J - ] = [ 2 J 3 ] ,  and q J 3  J + q - J 3  - - q  *I J * . 
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[XI, is the q-integer defined by 

where we have parametrized q as e*. As in the ordinary su(2) (q = 1 )  case, there is 
a bosonic construction of Uq(su(2)). While su(2)-algebra is realized by the well known 
Schwinger construction using two independent bosons (each corresponds to ?-spin and 
&-spin), Uq(su(2)) is realized by the so-called q-deformed bosons 117-191. 

To construct Uq(su(2)),  let us introduce two independent q-bosons, a and b, whose 
commutation relations are given by 

aut -qat ,  = q-N" bbt - qbtb = q-" (4a) 

[Nb, b] = -b [Na. bt] = bt (4c) 

otherwise 0. ( 4 4  

[N~ ,U]  = -a IN, .  a+] = at (4b) 

It is important to note that the number operator Ne (Nb) is different from uta (bib) when 
q + 1 .  The formal relation between them is 

at, = [N&. 

J +  = atb J -  = bia J 3  = f(N, - N b ) .  (5) 

Then, U,(su(Z)) is realized through the following relations: 

We can readily check that they, in fact, satisfy the defining relations of Uq(su(2)). The 
basis of the '(2j + I)'-dimensional representaticn of Uy(su(2)) is given by 

where [NI! is the q-factorial defined by [ N I !  = [ N ] , [ N  - 1 1 ,  ... [21,[11,. To avoid 
confusion, we denote the vacuum by IO)) and distinguish it from I j ,  0) in the following, All 
the above (2 j  + 1 )  states are eigenstates of the Casimir operator 

C = [J' + 41: + J-J' (7) 

with the eigenvalue [ j  + 4%.  The 'spin'-j is the eigenvalue of J = ( N ,  + &)/2 as in 
the su(2) case. That is, the three-dimensional representation relevant to our problem is 
constructed using two bosons (No + N b  = 2). For brevity, we abbreviate the symbol for 
q-integer [ 1, as [ ] in the following. 

Next, we derive the 'q-boson representation' of the q -vm state which is the analogue 
of the following bosonic representation found by Arovas et a1 [ 141 in the ordinary isotropic 
case: 

n ( a / b i + l  -b/a!+I)IO))i @ " . @  10))~. (8) 
i 
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Since (a, i f  b,+, - qbjn,+,)  t t  creates a j = 0 state out of two j = $ representations, we may 
naively write n(a/b/+, - qbfaf+l)lO)). However, this expression is incorrect owing to the 
asymmetry of the co-product, To get a correct answer, we proceed as follows. 

We seek the valence-bond operator of the following form: 

@B(i, i+ I )  = h ( a / ,  b!, a/+l, bf+]) = a!b,!+] -Ubjai+] t i  +pa; t i  ai+[ +ybibi+, t t  . 

Making the requirement that the four states alOvs(i ,  i + l)af+l, afUvs(i ,  i + l)bj+l, 
bfovB(i. i + I)af+, and b;OvB(i, i + I&;+, have no projection onto the V ( 2 )  (j = 2 
representation of Uq(su(2))) ,  we can fix 01 = q 2  and p = y = 0. For convenience, we use 

(9) OvB(i, i + 1) = q-'afb!+, - qbfa;+, 

as the valence-bond operator. Using this, the q-VBS state is written in terms of the product 
of the valence-bond operators 

Iq-VBS(L)) = (at)z-"(b:)'"-' n (q- 'a /b /+,  - qb~af+l)(nZ)"-'(bZ)z-nlO))~ '8. ' '  10))~. 
L-1 

i=l 

(10) 

As expected, the q -+ I limit recovers the well known Schwinger boson representation of 
the ordinary VBS state [9,lOJ. The ground states are fourfold degenerate, corresponding to 
the four degrees of freedom (m,  n = 1,2) of the left- and right-edge states. Let us express 
these four states in terms of 2 x 2 matrices and derive the matrix representation of the q-VBS 
state [9, IO] 

First, we consider !he situation of adding a single site to the L-site q-VBS state (namely 
the q-VBS state defined on a lattice of length L )  to make the new ( L  + ])-site q-VBS state. 
Let us express the L-site VBS state as the following 2 x 2 matrix (t & denotes the edge states 
at both ends): 

From these equations, it can easily be seen that there is a close analogy between the g-matrix 
construction and the transfer matrix in one-dimensional (not two-dimensional!) classical 
statistical systems. In both formalisms, the action of a matrix increases the system size by 
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one. However, while the latter spin states on lattice sites play the role of matrix-indices, 
the indices of the g-matrices correspond to the edge states in the former. 

Note that gi is written only in terms of the q-bosons of the i-site. We can also express 
it by the states of Uq(su(2)) 

This is nothing but the matrix found by Klumper etal [9, IO] (except that we choose slightly 
different coefficients). Using this matrix, the q-VBS state is given by the matrix product 

*vBs(L) =gmm@gz@...@gr (13) 

where gsm is 

(note that the action of the above g-matrix is not defined for a single-site state) and each 
element on the RHS corresponds to one of the four degenerate ground states. Namely, 
the VBS state with an open boundary condition is naturally incorporated into the matrix 
construction. 

For a chain with a periodic boundary condition, we obtain the following expression for 
the g-matrix: 

where aL+l = a ] ,  bL+l = bl. 
It is easy to generalize the above matrix-product construction to the extended VBS- 

type (q = 1) states (inhomogeneous, intermediate-VBS etc) [20,21]. In appendix A, we 
shall discuss this point in some detail. It may be worth mentioning that we can represent 
the VBS states using the matrix-product form though it  cannot be expressed by a simple 
direct-product form. Furthermore. the g-matrix contains states of a single site while the 
valencebond operator contains the bosons of the two adjacent sites. This fact enables us 
to calculate the expectation values rather easily. 

3. Hidden symmetry in the q-vBs state 

As mentioned in section 1, the ground state of the A U T  model has short-ranged correlations 
and seems to have no order. However, as was pointed out by den Nijs and Rommels 
and by Tasaki [5,6], there is a kind of hidden antiferromagnetic order. That is, its Sz- 
configuration has a generalized N6el order with randomly inserted zeros. This kind of order 
can be observed not by the ordinary staggered correlators but by the string-correlation 
functions [5,6]. Furthermore, Kennedy and Tasaki [15,161 demonstrated that a wide class 
of models, including the VBS model, exhibit a discwte Z2 x Zz symmetry through the non- 
local unitary transformation and related the breakdown of this symmetry to a non-vanishing 
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string order 115, 161. In this section, we calculate the ordinary two-point functions and the 
string correlations to discuss the relation with the hidden symmetry breaking. 

In order to discuss the 9-configuration, it is convenient to use the matrix-representation 
of the q-VBS state. Erst, we rewrite the definition of the g-matrix (11) as follows 

K Totsuka and M Suzuki 

where S& denotes E:=, Si. From the above expression, we can find a remarkable feature 
of the vas-type states. That is, when we construct the configuration of the VBS state from 
the left, the value of SF is determined only by the sum of the Si's sitting to the left of 
the site i .  This reminds us of the Markov process. The situation can be seen more clearly 
using the following pictorial representation. If we notice that ck: St always (i.e. for all i) 
takes the values - 1, 0 or 1, we can depict the Se-configuration by the steps going upward 
and downward between level 0 (E Sj = 0) and level 1 (E Si = 1) (when the left-edge 
state = t) or level (-1) and level 0 (when the left-edge state = &). Such a feature of the VBS 
state was first noticed by den Nijs and Rommels, who named it 'the disordered flat phase' 
[SI. What the g-matrix formalism tells us is that the Sf-value of a given site i ('height' of 
the steps) depends only on the 'level' between site (i - 1) and site i. Nachtergaele et al 
122,231 discussed the massive behaviour of the states which possess such a 'Markov-like' 
property. 

From the above argument, it is obvious that string order also exists in our model. That 
is, only the downward (upward) steps are allowed when the last level is 1 (-1). This rule 
excludes configurations like (. . . , -1.0,0, - 1 , .  . .) or (. . . , 1,0,1,. . .). Hence, we may 
expect the non-vanishing string-order parameter, at least in the z-direction. It is interesting 
to see which Sz-value is most probable in this ground state. It can be seen by calculating 
(P(Sz = m ) )  (projection operator onto Sz = m state). The results are 

q 2  - 1 + 9-1 

PI 
Prob(Sz = 0) = 

1 
Prob(Sz = il) = - 

[31 

Namely, the probability of finding non-zero (il) Sz-values decreases as we move away 
from q = 1 (su(2)). The (00.. '00)  configuration especially dominates in the q + 0 or CO 

limit, as can be seen from the boson representation of Iq-vBs). 
Next, we formally introduce the Kennedy-Tasaki transformation in our model. As 

mentioned earlier, if we identify l j ,  m)  (rep. basis of U,(su(Z))) with IS, Sz) (those of 
su(2)), the following relations hold for the j = 1 representation: 

Using these, we can define the following generalized Kennedy-Tasaki transformation 
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in our anisotropic q-VBS state. Of course, our argument is essentially based on the S-J 
relations: this expression is valid only for the S = 1 (or j = 1) case. Using the formal 
definition 

we can easily derive the well known formulae [ 15,211 

Using these relations, we can verify that the transformed Hamiltonian U-"HU is invariant 
under: (i) Sx 4 4'; and (ii) the simultaneous transformation Sz + - S ' , q  4 q-'. 
That is, U-I'FLU has a generalized ZZ x Zz symmetry. To see how the Kennedy-Tasaki 
transformation works, we have only to compute the probability distribution (16) for the 
transformed state U l q - V B S )  (it is calculated using the method described in appendix B) 

, 0) 

, &) 
if the left edge is t 

if the left edge is 4. 
(20) (Prob(+l), Prob(O), Prob(-1)) = 

This implies that the Kennedy-Tasaki transformation converts the q-VBS state into a 
'ferromagnetic' state as in the V B S  case except that the 'magnetization' shrinks. 

To investigate the breakdown of this hidden ZZ x ZZ symmetry, we calculate: (i) two- 
point correlators; (ii) string correlators ( V p y )  (or = x or z ) ;  and (iii) a one-point function 
of the string variables Vp. Now that we have the boson representation of the q-VSS state, it 
is possible to calculate these quantities straightforwardly. However, there is a more elegant 
way of computing various quantities [ 101. This method is briefly reviewed in appendix B. 

First we calculate the norm of the VBS state (VBS; or, plVBS;  or, p) .  Using the tensorial 
method, the calculation reduces to evaluating the products of the 4 x 4 matrices 

(VBS:  or, plvss; or, p )  = ( G ~ Y G ) ' - I ) ~ , ~  (i, j = I or 4) 

where the matrices G and Gsmf are defined as 

q2 0 1 0 0 [2] 

q-q21 0 0 4-2 [2] 0 0 1 

G 2 =  ( 0 0 -1 0 - 1  : T I )  0 G z = (  0 0 0 1  1 0 0 )  0 , (21) 

Thus, we get 
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To evaluate the two-point functions and the string correlators (the two-point function of 
the non-local string operators Vp), we need two other types of matrix 

-42 0 0 q 2  0 0 -q2[2] 
-1 0 

0 0 -4-2 -q-2[2]  0 0 4-2  

In terms of the above matrices, for example, (q-VBslSp nil:+, exp(iaS;)Sp/q-VBs) are 
simply expressed as 

( Gsw" ( G)i-2G" ( G:~nJi-j-' G" (G)L- j )m,n .  

Although we can compute them for an arbitrary i ,  j ,  L, the final expressions are very 
lengthy and complicated. Hence, we will show only the asymptotic (i, j ,  L + 03 while 
li - j l  = fixed) form 

From the above results, we can readily see that q = f i  ([3] = -1) are special points where 
damping factors disappear. They correspond to the 'critical point', found by Kliimper et 
a1 [9, lo], where the model ( I )  reduces to the (integrable) 19-vertex model. Furthermore, 
at these points, the ground-state uniqueness does not hold (see appendix B). For later 
convenience, we also calculate the static shucture factors (SCL(k)Su(-k) )  ( S ( k )  is a Fourier 
transform of Sp). 

The string correlation functions in the z-direction are 
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This clearly shows that the string order exists in the z-direction as expected. If we take 
q + 0 or q + 00 limits in the above result, we obtain (V:V;) = 0, which is consistent 
with the fact that only 00, ' 00 (i.e., the large-D-phase-like situation) is allowed in these 
limits. 

Owing to the lack of rotational symmetry, it is convenient to use the periodic boundary 
condition in calculating the string correlation function in the x-direction. The calculation is 
as before. The result is 

(27) 
Since (1 + [21)/[31 e 1 for real q .  i t  vanishes as li - j l  + CO. That is, the Z2-symmetry 
which corresponds to the rotation about the z-axis by x is unbroken. Of course, it becomes 
non-vanishing (-4/9) in the q + 1 limit. Here, we emphasize that any small finite value 
of 1q - 1 I destroys the string order in the x-direction in our model. 

The above results suggest that the 22 x ZZ symmetry is broken only partially, though 
the ground state has all the other properties that the Haldane systems are expected to have, 
namely. the unique infinite-volume ground state, the excitation gap and the non-existence 
of the ordinary NBel order. In this sense, systems with a breakdown of Zz x Zz symmetry 
may belong to a subclass of the whole Haldane systems. 

4. Approximate excitation spectra 

From the results in the preceding section, we may also expect massive excitations for our 
generalized VBS model. Since it is difficult to get exact excited states for it, we have to be 
satisfied with some approximate calculations. The SMA is one of the most standard methods 
for evaluating an upper bound of the true spectrum. Using this method, Arovas et ai [14] 
obtained the approximate spectrum for the S = 1 VBS model. 

To do this, we first calculate the action of S*, SL on the q-VBS state. Using the relations 

and the commutation relations (4a)-(4c), we easily obtain - 
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where (. . .) denotes the product of the q-valence-bond operators. As in the ordinaty VBS 
case. S: and S’ destroy the valence-bond structure locally. Such defects were called 
‘crackions’ by b a b e  [24]. Such configurations can also be treated by the matrix formalism. 

K Totsuka and M Suzuki 

In the SMA, the following inequality holds for the true spectrum: 

where 

The evaluation of the RHS of equation (32) is lengthy but straightforward and we finally 
arrive at 

The q 3 1 limit of this expression agrees with the known results 1141. The Haldane gap 
for the z-mode is given by 

This suggests that the ‘mass’ of a magnon increases by the q-deformation (for a real value 
of q) .  The limits q + 0 and q + 00 are subtle. As shown in [lo], the ‘kinetic term’ is 
absent from ‘H in this limit and, hence, ~ ( k )  is independent of k. 

Although the action of the magnon operators ST on the classical N&l state is quite 
simple and manifest, it is obscured in the VBS state owing to its liquid-like nature. However, 
as pointed out by Fith and S6lyom [ E ] ,  the kink nature of the isolated magnon (or 
equivalently ‘crackion’) is revealed through the Kennedy-Tasaki transformation. 

First. we note 

Using the matrix-formalism, the evaluation of the RHS is easy and we get 

where we choose + if i < j and - if i > j, i.e., after the Kennedy-Tasaki transformation, 
a kink at the magnon position becomes visible. In the vi-iginal Sz-configuration, it appears 
as a domain wall (0, -1,O, 1,0,0, 1, - 1 , O  etc) for the string order. Such a topological 
excitation is responsible for the destruction of the hidden order. 
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5. Summary and discussion 

Using the q-Schwinger realization of Uq(su(2)), we have constructed the ‘bosonic’ 
representation of the q-VBS state. Of course, the matrix-product ground state (MPG) can be 
constructed independently of the bosonic representation and the MPG does not always have a 
corresponding expression in terms of (Schwinger-type) bosons. However, in order to obtain 
a physical meaning for the MPG and see how it is natural for the valence-bond-type states, 
it would be important to investigate the relation between the two types of construction 
for special cases. Moreover, it is known [161 that the edge states (which are manifest 
in the ‘Schwinger-boson’ representation) have an important meaning in the discussion of 
the hidden-symmetry breaking. It has a simple expression similar to the Schwinger boson 
representation of the ordinary VBS state found by Arovas edal except that the coefficients of 
the ‘valence-bond’ operator are deformed. In this representation, the edge state is manifest. 

Then, we have derived the MP representation, where the valence-bond operator is inserted 
when we contract matrix indices. The four entries of the g-matrix correspond to the four 
edge states of the (q-)AKLT model with free ends. Our method provides a very simple way 
to obtain the MP representation for a wide class of valence-bond-type states including the 
completely dimerized state. The MP representation is also useful in calculating quantities 
which are difficult to evaluate by the coherent-state method. Another possible application of 
it is to construct anisotropic VBS-type states for higher values of S. Once we obtain a matrix 
representation of a given (isotropic) VBS-type state, we can get its anisotropic version by 
modifying the weights (see appendix A). Changing the weights corresponds to changing the 
‘particle’ concentration without destroying the string order, as we have seen in section 3. 

We calculated the string-order parameters using the matrix formalism and found that the 
string LRO does not exist in the x-direction, whereas it does in the z-direction as expected. 
In the context of the hidden 2 2  x Zz-breaking picture, this means that only a single ZZ- 
symmetry is broken in our model, however small the deformation is. That is, our S = 1 
model has a unique disordered ground state with a gap, while the hidden symmetry is only 
partially broken. 

An approximate excitation spectrum is given using the SMA. Within this approximation, 
the gap increases both in the z-directions by the q-deformation. Excitations are created 
by breaking the valence bonds locally, analogously to the ordinary VBS case. They have 
a topological character, namely, they behave like kinks for the string variables. Such 
excitation reduces the string order at finite temperatures. 

After we finished this work, we discovered that M T Batchelor and C M Yung are also 
discussing the q-deformation of the VBS-type models [26]. 

Acknowledgment 
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Appendix A. g-matrix for general 0 s - t y p e  states 

In this appendix, we discuss the matrix-representation of section 3 in more detail. As 
mentioned there, the indices of the ‘8’-matrix correspond to the edge states at both ends. 
The essential fact of this construction is that contraction of the matrix indices yields the 
valence-bond operators. In the following, we restrict ourselves to the q = I (m(2)) case. 
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For example, we consider first a spin4 VBS state [14-27]. In this case, the edge 
states consist of (S + ])-states G ( a t ) s - P + l ( b t ) P - l  ( p  = I ,  ... , S + 1) (we have 
multiplied the numerical factor for later convenience). Correspondingly. the 'g-matrix' is 
an (S + I )  x (S + I)-matrix. Just as in the S = 1 case, the elements of g are determined so 

indices. The kesults are 
that the valence-bond operator (a/bf+, - bini+,) t t  s may appear when we contract the matrix 

(A. i ) f S-m+n f S+m-n (gj)mn = ( -1)S-"+lJ scm-l x SC,-l (a, (b i )  l0))i 

and 

(A.2) ( f)S-m+n t S t m - n  (g;W"),, = JSC,-I x SC,-I a1 (b,)  lo))^. 

To be concrete, the gi  for the S = 2 case is given as 

In a similar way, we obtain the matrix representation of the 'intermediate-D VBS state' 
discussed by Oshikawa [21] 

It is expressed in the following ((S - d + 1)-dimensional) matrix form: 

Iint-DvBs; L )  = gs'" @ I @ . . . @ gp-D (A.4) 

where 

(gj""D)m" (-1)S-d-mtI ~-dc,-] (a~)S-m+n(b~)S+m-" IO))/ (A.5) 

and 

(bj)s+m-"lO))l. ( A 4  

The inhomogeneous VBS state discussed by Arovas et al [I41 and Freitag eta1 [ZO] has 

&sum) - (at S-m+n 
mn - 1) 

the g-matrix (The following example is the S = 3/2 case) 

t t t  t t  z f  -ai (a ibj+l-bi~j+l)  bi+iIO))i@IO))i+~ -ai (aibi+i - biai t l )  ai+~lO))i@lO))i+~ 
gi . i+l= ( b i ~ a i ~ i ~ 1 - b j ~ i ~ i )  t t t t t 2 ~ : ~ i l O ~ ) i @ I W i t ~  t bj(a,bi+, t t -bt,t i i t , )  2 ai+,lO))i@lO))itl t 

(A.7) 

In this case, the g-matrix consists of the two-site state. Of course, we can construct g's 
which consist of a singte site using rectangular matrices. 

Combining these expressions with the tensorial method used by Kliimper et al, we can 
easily evaluate the ordinary two-point functions, the string correlation functions etc. These 
results will be reported elsewhere. 
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Appendix B. A method of calculating expectation values 

In this appendix, we briefly review the method of calculating expectation values with respect 
to the VBS-type states [lo]. For our purpose, we extend the result of [IO] to the case of an 
open chain. 

As we have seen, the VBS-type states are simply expressed using the g-matrices as 

C3 g2 8 ’ ”  C3 g~],,/. 

In the above expression, it is important that the matrix g is written in terms of local operators 
(usually those of a single site). We are interested in expectation values of the following 
type: 

IVES; a, 0) = 

(R),.p = (VBS; E, BIAilvBS; a, B )  
If we rewrite the RHS using the elements of g and introduce the following G-matrix whose 
entries are c-numbers: 

(B.1) t 
G(m,-k,n,.,),(m,,n,) gj(mj-1, mj)gj(nj-~? n,) 

and 

G$j.,,n,.b),(m;,n,) g!hi-l> miMigi(ni-i,ni) (B.2) 

we can express the desired quantity as follows 

(Ai)?& = (hfd)l,l 

(Ai)&$ = (hfd)4.1 

(Ai)?? = (MdIl.4 

(Ai)&? = (Md14.4 

In the above equation, the 4 x 4 matrix hf.4 is defined by 

03.3) 

and we have adopted the lexicographical ordering for the double (tensorial) indices of G to 
regard it as an ordinary matrix. For the case of a periodic boundary condition, we take a 
trace of MA. 

Using the above results, we can readily give a proof for the uniqueness of the ground 
state. Essentially, the proof goes is as in [4]. 

First, we show that an arbitrary finite-volume ground state Irp; L )  of an open chain is 
expanded by the four q-VBS states (lo), i.e. 

hf,q=G surc(G)t-ZGd(G)L-i 

This is proved by Klumper et a l  and we refer the reader to the appendix of [ 101 for the 
detail. It is important to note that the proof breaks down for 4 = izi. 

To prove the infinite-volume uniqueness, we show the following equality: 

(q-VBS; L ;  UBIdlq-VBS; L; y 6 )  
lim 

L.i-m 11 Iq-VBS; L ;  ap) 11 11 Iq-VBS; L ;  y6) 11 
c:,,=, (g-VBS; L ;  puldlq-vBS; L ;  p ~ ) q @ - ~ ”  

= &y6pS (B-5) C:,,=,(q-vBs; L; pUlq-VBS; L; I.Lu)qP-’” . 
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The proof is straightforward. Using the matrix formalism and 

the numerator of the LHS of equation (B.5) can be rewritten as 

X (q-VBS; I ;  ml,m,+l[Alq-VBS;I;ml,m,+t)qm'-3mrtl. 
mt.mr+t 

Thus the equality is proved. We define the infinite-volume ground state by the RHS of (B.5) 
and denote it by w(A). 

Using the above two facts, we can prove the desired theorem stating that the infinite- 
volume ground state p which satisfies p(hi , i+ l )  = 0 is indeed equal to the ground state w 
defined above. The reader is referred to [41 for the details of the proof. It may be worth 
mentioning that for q = f i ,  the above theorem of the uniqueness breaks down and in fact 
we have degenerate ground states [IO]. We can also extend the theorem to more general 
matrix-product states as discussed by Kliimper et nl. For generic values of parameters, these 
models have a unique Sfoc = 0 ground state in the infinite-volume limit. 
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